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Abstract
We calculate the stability of a multiple relaxation region MHD (MRXMHD) plasma, or stepped-Beltrami plasma,
using both variational and tearing mode treatments. The configuration studied is a periodic cylinder. In the variational
treatment, the problem reduces to an eigenvalue problem for the interface displacements. For the tearing mode
treatment, analytic expressions for the tearing mode stability parameter �′, being the jump in the logarithmic
derivative in the helical flux across the resonant surface, are found. The stability of these treatments is compared
for m = 1 displacements of an illustrative reverse field pinch-like configuration, comprising two distinct plasma
regions. For pressureless configurations, we find the marginal stability conclusions of each treatment to be identical,
confirming the analytical results in the literature. The tearing mode treatment also resolves ideal MHD unstable
solutions for which �′ → ∞: these correspond to displacement of a resonant interface. Wall stabilization scans
resolve the internal and external ideal kink. Scans with increasing pressure are also performed: these indicate that
both variational and tearing mode treatments have the same stability trends with β, and show destabilization in
configurations with increasing core pressure. Combined, our results suggest that variational stability of MRXMHD
configurations is sufficient for both ideal and tearing (�′ < 0) stability. Such configurations, and their stability
properties, are of emerging importance in the quest to find mathematically rigorous solutions of ideal MHD force
balance in 3D geometry.

PACS numbers: 52.35.Bj, 52.35.Py, 52.55.−s, 52.55.Hc, 52.55.Lf, 52.55.Tn

1. Introduction

Recently, Hole et al [1] proposed a model for a partially
relaxed plasma–vacuum system. The purpose of the model,
which abandons all but a small number of flux surfaces, is
to provide a mathematically rigorous foundation for MHD
equilibria in 3D configurations. The model is based on a
generalization of the Taylor relaxation model in which the
total energy (field plus plasma) is minimized subject to a
finite number of magnetic flux, helicity and thermodynamic
constraints. These constraints apply to relaxation regions in
which the plasma behaves as an ideal gas confined by toroidal
barrier interfaces, which are arbitrarily thin, deformable ideal
MHD regions. The relaxation can be due to any mechanism
that breaks magnetic confinement and thus includes tearing
and field-line chaos. The model thus leads to a stepped
pressure profile, with the pressure jumps across the barrier
interfaces being counterbalanced by corresponding magnetic
field jumps, which may or may not include jumps in rotational
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transform. Our overarching objective is the development of
an equilibrium solver for 3D plasmas built on a closely spaced
stepped pressure profile model.

In the 3D case, we envisage that the barriers can be chosen
to be nonresonant KAM surfaces that survive the onset of
field-line chaos intrinsic to 3D equilibria. In between these
interfaces, the field is Beltrami, such that ∇ × B = µB, with
µ a constant. The boundary condition across the interfaces
is the continuity of total pressure P + B2/(2µ0). Such a
model, which we term a multiple relaxation region MHD
(MRXMHD) model, raises a number of questions. How should
the equilibrium be constrained? How much jump in pressure
and/or rotational transform ι- can each interface support? Are
the interfaces stable to deformation? Can the class of stability
shed information onto other quasi-relaxed phenomena?

Previous work has focused on the equilibrium constraints
[2, 3], construction of a numerical algorithm for calculation
of Beltrami fields between interfaces in 3D configurations [4]
and a variational principle for the equilibrium and stability of
the multiple interface configuration in cylindrical plasmas [1].
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Figure 1. Schematic of magnetic geometry (a), showing ideal MHD barriers Ii , the conducting wall W , plasma regions Pi and the vacuum
V . Panel (b) shows the q profile used for stability studies in section 4, with µ1 = 2 (core) and µ2 = 3.6 (edge).

We have also explored the relationship between relaxed plasma
equilibrium models discussed here, and entropy related plasma
self-organization principles [5].

This work, which studies the tearing mode stability
of 2D configurations, and compares and contrasts stability
conclusions with those of the MRXMHD variational principle,
complements a separate publication [6] that unifies relaxed
and ideal MHD principles for constructing global solutions
comprising mixed relaxed and ideal regions. To conduct
a comparative study, we have selected perturbations with a
particular poloidal mode number, m = 1. While it was
not our intent to study the comprehensive stability of the
plasma for all Fourier modes, there is value in elucidating the
relevance of the results to modes with m �= 1. In Mills [6],
we have shown that the linear displacement perturbation ξ

obeys the same Euler–Lagrange equation of Newcomb [7]
for both relaxed and ideal MHD perturbation, except in the
neighbourhood of the magnetic surfaces where B·∇ is singular.
In cylindrical geometry, the difference between treatments
lies in the class of solutions allowed: in ideal MHD only
Newcomb’s small solutions are allowed, whereas in relaxed
MHD only the odd-parity large solution and even-parity small
solution are allowed. Given ξ obeys the same Euler–Lagrange
equation, we utilize the proof of Newcomb that to demonstrate
a configuration is stable, it is sufficient to show that it is stable
for all values of the axial wavenumber κ when m = 1 and for
m = 0, κ → 0. The latter class, m = 0, κ → 0, corresponds
to a change of equilibrium state. We assume that we have
chosen the ‘lowest’ equilibrium state, such that m = 0, κ → 0
modes are stable.

A second motivation for this work is to extend a recent
tearing mode stability treatment developed for a zero pressure,
no-vacuum, reverse field pinch (RFP) [8], to more realistic
plasma configurations, by including nonzero pressure and a
vacuum region. Recently, Tassi et al [8], performed a tearing
mode stability treatment on stepped µ force-free equilibria
close to Taylor-relaxed states. The purpose of their work was to
develop a mechanism for the formation of cyclic Quasi-single-
helicity (QSH) states observed in RFPs [9]. They consider a
cylindrical plasma divided into two different Beltrami regions,
and encased in a perfectly conducting shell, and compute the
tearing mode stability parameter �′ at a resonant radius rs for
a helical flux perturbation χ1(r) = mBz1(r)−κrBθ1(r). Here

r is the radial coordinate and m and κ the poloidal and axial
wave number. Tassi et al [8] find critical values of the jump in
µ, beyond which the RFP-like plasma is unstable. Based on
these, they postulate the QSH state may be viewed as a small,
cyclic departure from a Taylor-relaxed state.

We extend the tearing mode stability treatment of Tassi
et al [8] to plasmas with finite pressure and a vacuum region,
and compare stability conclusions of our variational treatment
to that of a tearing mode stability analysis. Our paper is
arranged as follows: section 2 summarizes the variational
model of stepped pressure profile plasmas, presented in Hole
et al [1], and introduces a tearing mode model. Section 3
treats MRXMHD plasmas in cylindrical geometry, yielding
stability parameter expressions for both the variational and
tearing mode treatments. In section 4, we compute m =
1 stability for an example configuration, draw comparisons
between the stability conclusions based on variational and
tearing mode treatments, and explore marginal stability limits
in wavenumber space as a function of pressure. Finally,
section 5 contains concluding remarks.

2. Multiple interface plasma–vacuum model

The system comprises N Taylor-relaxed plasma regions, each
separated by an ideal MHD barrier. The outermost plasma
region is enclosed by a vacuum, and encased in a perfectly
conducting wall. Figure 1(a) shows the geometry of the
system, and introduces the nomenclature used to describe the
region and interfaces. The regions Ri comprise the N plasma
regions R1 = P1, . . . , RN = PN and the vacuum region
RN+1 = V . Each plasma region Pi is bounded by the inner and
outer ideal MHD interfaces Ii−1 and Ii respectively, whilst the
vacuum is encased by the perfectly conducting wall W .

2.1. A variational description

In previous work [1] we outlined our variational principle,
which lies between that of Kruskal and Kulsrud [10]—
minimization of total energy W ≡ ∫

[B2/(2µ0)+P/(γ −1)]dτ

(where P is plasma pressure, γ the ratio of specific heats,
and dτ a volume element) under the uncountable infinity of
constraints provided by applying ideal MHD within each fluid
element—and the relaxed MHD of Woltjer [11] and Taylor

2



Nucl. Fusion 49 (2009) 065019 M.J. Hole et al

[12]—minimization of W holding only the two global toroidal
and poloidal magnetic fluxes, and the single global ideal MHD
helicity invariant H ≡ ∫

A · B, constant. In summary, the
energy functional could be written

W =
N∑

i=1

Ui −
N∑

i=1

µiHi/2 −
N∑

i=1

νiMi, (1)

where µi and νi are Lagrange multipliers and

Ui =
∫

Ri

dτ

(
P

γ − 1
+

B2

2µ0

)
, (2)

Mi =
∫

Ri

dτP 1/γ , (3)

Hi =
∫

Ri

dτA · ∇ × A +
∮

C<
p,i

dl · A
∮

C<
t,i

dl · A

−
∮

C>
p,i

dl · A
∮

C>
t,i

dl · A. (4)

The term Ui is the potential energy, Mi the plasma mass and
Hi the magnetic helicity in each region Ri . In equations (2)–
(4), P is the equilibrium pressure, B the field strength and A
the vector potential. The superscripts > and < denote rotations
about the magnetic field on the inner and outer boundaries of
the regions Ri , respectively.

Setting the first variation to zero yields the following set
of equations:

Pi; ∇ × B = µiB, Pi = const., (5)

Ii; n · B = 0, [[Pi + B2/(2µ0)]] = 0, (6)

V; ∇ × B = 0, ∇ · B = 0, (7)

W; n · B = 0, (8)

where n is a unit vector normal to the plasma interface Ii and
[[x]] = xi+1 − xi denotes the change in quantity x across
the interface Ii . The boundary conditions, n · B = 0, arise
because each interface and the conducting wall is assumed to
have infinite conductivity. In turn, these imply the toroidal flux
in each plasma region (and the poloidal flux in the vacuum) is
constant during relaxation. Given the vessel with boundary W ,
the interfaces Ii and the magnetic field B, equations (5)–(8)
constitute a boundary problem for the plasma pressure Pi in
each region Ri . If the properties of the plasma are prescribed
on the interface, equation (5) becomes a nonlinear eigenvalue
problem for the Lagrange multipliers, µi , which has an infinite
number of discrete solutions. Different solutions correspond
to a different number of poles in the rotational transform [4].

Minimizing the second variation subject to the constraint
of the positive definite normalization

∑N
i

∫
Ii

dσ |ξi |2, with dσ

an area element on Ii , yields the following set of equations for
the variation in the magnetic field b = δB:

Pi; ∇ × b = µib, (9)

Ii; ξ ∗
i [[B · b]] + ξ ∗

i ξi[[B(n · ∇)B]] − λξ ∗
i ξi = 0, (10)

n · bi,i+1 = Bi,i+1 · ∇ξi + ξin · ∇ × (n × Bi,i+1), (11)

V; ∇ × b = 0, ∇ · b = 0, (12)

W; n · b = 0. (13)

Here ξi is the normal displacement of the interface Ii and
λ is the Lagrange multiplier of the stability treatment, such
that λ < 0 indicates a lower energy state is available. Using
equations (9)–(13) the perturbed flux through each region can
be found. With a suitable Fourier decomposition chosen,
equation (11) solves for the unknown coefficients of the
perturbed field in each region. With substitution, equation (10)
then becomes a linear eigenvalue equation for λ.

2.2. Tearing mode treatment

A starting point for the treatment of tearing modes is the set of
MHD equations:

∂ρ

∂t
+ ∇ · ρv = 0, (14)

ρ
dv

dt
= J × B − ∇p, (15)

d

dt

p

ργgas
= 0, (16)

E + v × B = ηJ, (17)

∇ × E = −∂B/∂t, (18)

∇ × B = µ0J, (19)

∇ · B = 0, (20)

being mass continuity, the fluid equation of motion, the
adiabatic equation of state, Ohm’s law, Faraday’s law,
Ampere’s law and magnetic monopole condition, respectively.
Here v is the fluid velocity, ρ is the plasma mass density, J is
the current density, η is the plasma resistivity and t is the time.
The plasma parameters change across each interface and across
surfaces with resonant perturbations (i.e. perturbations which
satisfy κ · B = 0, with κ the wave vector of the perturbation).

We solve for the plasma parameters for a zero flow plasma
(i.e. v = 0) in ‘outer’ regions away from the resonant surfaces
where the effects of resistivity are negligible. To solve, the field
is written B = ∇χ ×h+gh, where g and χ are scalar functions
of position and time and h is the helical field vector. Next, χ

and g are expanded as a Fourier perturbation, and solutions
to the linearized Beltrami equation are found. The ODE for
χ1(r), the radial envelope of the linear Fourier perturbation
for χ , integrates to a jump condition in χ1(r)

′/χ1(r) at each
interface, expressed in terms of equilibrium parameters. The
perturbation growth rate, obtained by linearizing Faraday’s
law and substituting for E as determined by Ohm’s law, is
proportional to

�′ = [
χ1(r)

′/χ1(r)
]r+

s

r−
s

, (21)

such that �′ = 0 denotes marginal stability and �′ > 0
instability. Here rs is the radial position of the resonant surface
and r±

s = rs + 0±. The final expression for �′ is a function of
the equilibrium parameters in the resonant region, as well as
jumps in equilibrium parameters across the interfaces.
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3. MRXMHD cylindrical plasmas

Equilibrium solutions in an azimuthally and axially symmetric
cylinder are available in Hole et al [1]. In the cylindrical
coordinate system (r, θ, z) they are

P1 : B = {0, k1J1(µ1r), k1J0(µ1r)},
Pi : B = {

0, kiJ1(µir) + diY1(µir),

kiJ0(µir) + diY0(µir)
}
,

V : B = {0, BV
θ /r, BV

z },
(22)

where ki, di ∈ 	 and J0, J1 and Y0, Y1 are Bessel functions
of the first kind of order 0, 1, and second kind of order 0,
1, respectively. The terms BV

θ and BV
z are constants. The

constant d1 is zero in the plasma core P1, because the Bessel
functions Y0(µ1r) and Y1(µ1r) have a simple pole at r = 0.
Radius is normalized to the plasma–vacuum boundary, located
at r = 1. The equilibrium is constrained by the 4N + 1
parameters:

{k1, ..., kN , d2, ..., dN , µ1, ..., µN, r1, ...rN−1, rw, BV
θ , BV

z },
(23)

where ri are the radial positions of the N ideal MHD barriers,
rN = 1 and rw is the radial position of the conducting wall.
Equivalent representations and the mapping between these
solutions has been discussed in earlier work [2].

3.1. Stability from a variational principle

We have assessed stability using a Fourier decomposition in the
poloidal and axial directions for the perturbed field b = ∇ × a
and the displacements ξi of each interface. That is,

b = b̃ei(mθ+κz), ξi = Xie
i(mθ+κz), (24)

where m, κ are the Fourier poloidal mode number and axial
wave number and b̃/b and Xi are complex Fourier amplitudes.
Under these substitutions, and after solving for the field in each
region, equation (10) reduces to an eigenvalue matrix equation
η · X = λX with column eigenvector X = (ξ1, . . . , ξN)T ,
eigenvalue λ, and η a N × N tridiagonal real matrix.

3.2. Tearing mode stability

In the helical coordinate u = mθ +κz, a divergence-less B can
be written

B(r, u) = ∇χ(r, u) × h + g(r, u)h, (25)

where χ is a helical flux, and gh a helical field. The vector h
is defined by h = f (r)∇r ×∇u, where f (r) = r/(m2 +κ2r2)

is a metric term. As in Tassi et al [8] we search for helical
perturbations of the form

χ(r, u, t) = χ0(r) + χ1(r)e
γ t+iu,

g(r, u, t) = g0(r) + g1(r)e
γ t+iu.

(26)

In this representation, resonant surfaces are those for which
χ ′

0(r) = 0. The equilibrium field satisfies the Beltrami
equation, giving rise to µ = g′

0(r)/χ
′
0(r), such that the

rotational transform can be written

ι- = −R

r
× rκg0(r)/χ

′
0(r) + m

mg0(r)/χ
′
0(r) − rκ

. (27)

Here we have elected to make all plasma perturbations axially
periodic, with axial periodicity length L = 2πR, such that
r/R is an effective inverse aspect ratio of the plasma. This
assumption discretizes the wavenumber such that κ = −n/R,
where n takes the set of integers. We adopt this change of
notation in section 4.

By writing the incompressible velocity field in a similar
form to equation (25), and expanding continuity to first order,
it is possible to show perturbations in the flow, pressure and
mass density do not affect marginal stability. In each of the
plasma regions, projections of the linearized Beltrami equation
along h and ∇r yield

g1 = g′
0(r)/χ

′
0(r)χ1(r), (28)

χ0(r)

[
χ ′′

1 (r) +
f ′(r)
f (r)

χ ′
1(r) +

(
µ2 − 1

rf (r)
+

g0(r)

χ ′
0(r)

µ′

+
2mκ

m2 + κ2r2
µ

)
χ1(r)

]
= 0, (29)

where µ′ vanishes everywhere except at interface locations,
where it becomes singular. These are identical to
equations (27) and (29) of Tassi et al [8]. Under the

transformation xi = r

√
|µ2

i − κ2|, equation (29) reduces

to a Bessel equation if κ2 < µ2, or modified Bessel
equation if κ2 � µ2. In the vacuum region, and under
the transformation xN+1 = |κ|r , equation (29) reduces to a
modified Bessel equation. In the ith region, either side of the
resonant surface, and in the vacuum, solutions are different
combinations of Bessel or modified Bessel functions with
undetermined coefficients ζi, �i , ζi−s , �i−s , ζi+s , �i+s , and
ζV , �V , respectively. As only the ratio χ ′

1(r)/χ1(r) appears in
�′, its value is unaffected by normalizing ζ = 1 in each interval
and region. The requirement of boundedness at r = 0, and the
presence of perfectly conducting wall implies

χ1(0) = χ0, χ1(rw) = 0. (30)

Noting that the perturbed flux must be continuous across each
interface, equation (29) can then be integrated about each
interface to yield[[

χ ′
0(r)

χ ′
1(r)

χ1(r)

]]
=

[[
−χ ′

0(r)
g0(r)

χ ′
0(r)

µ

]]
. (31)

The parametric dependence can also be examined by solving
for χ0(r) and using equation (27) to eliminate g0(r)/χ

′
0(r).

Solving equilibrium for χ0(r) gives

χ ′
0(r) = B

√√√√√ m2 + κ2r2(−mR/r + κR ι-r/R

ι-m + κR

)2

+ 1

= F(B, r, R, m, κ).

(32)

Finally, eliminating χ ′
0(r) and g0(r)/χ

′
0(r), equation (31) can

then be rewritten[[
F(B, r, R, m, κ)xi

χ ′
1(xi)

χ1(xi)

]]
= [[G(B, µ, ι-, r, R, m, κ)]] ,

(33)
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Figure 2. Dispersion curves (a) and mode localization (b) of m = 1 modes of a pressureless MRXMHD plasma with q profile given by
figure 1(b). In panel (a), the solid lines are eigenvalues (λ) of the MRXMHD treatment, and represent different eigenfunctions, while the
points are values of −0.002 × rs�

′ determined from tearing mode analysis of section 3.2. The vertical dashed lines correspond to zeros in λ.
Panel (b) shows the resonant surfaces rs of tearing modes (points), and effective localization rs,eff of modes using the variational treatment
(solid line). The solid points and cross-hairs denote stable and unstable tearing modes, respectively. The heavy solid line denotes solutions
for which λ < 0, and the dashed vertical lines correspond to marginal stability, λ = 0.

(This figure is in colour only in the electronic version)

where the transformed variables xi = r

√
|µ2

i − κ2| are
different in each region, and where
G(B, µ, ι-, r, R, m, κ) = rµF(B, r, R, m, κ)

×mR/r − κR ι-r/R

ι-m + κR
. (34)

With ζ = 1 everywhere, the tearing mode parameter �′ =
[χ ′

1(r)/χ1(r)]
r+
s

r−
s

(see equation (21)) is a function of � either
side of the resonant surface, and through equation (33), all
� values. For example, suppose κ2 < µ2 everywhere, and
the resonant surface lies in the second Beltrami region. The
general solution to equation (29) can then be written
χ1

=




κx1(Jm−1(x1) − �1Ym−1(x1))

+ m(µ1 − κ)(Jm(x1) − �1Ym(x1)), 0 < x1 < xi1

κx1(Jm−1(x2) − �2−sYm−1(x2))

+ m(µ1 − κ)(Jm(x2) − �2−sYm(x2)), xi1 < x2 < xs

κx2(Jm−1(x2) − �2+sYm−1(x2))

+ m(µ2 − κ)(Jm(x1) − �2+sYm(x2)), xs < x2 < xi2

x3(Im−1(x3) − �V Km−1(x3))

+ m(Im(x3) + �V Km(x3)), xi2 < x3 < xw

(35)
where xs is the value of x at the resonant surface, and where we
have set ζ = 1 everywhere. Using these solutions, the interface
jump condition (equation (33)) at interface I1, can be solved
for �2−s in terms of �1. Similarly, equation (33) at interface
I2 can be solved for �2+s in terms of �V . Next, we apply the
boundary conditions of equation (30) to equation (35). The
function Ym(x1) has a pole at x1 = 0, and so χ1(x1) = 0
requires �1 = 0. Finally, using χ1(rw) = 0, equation (35) can
be solved for �V . Thus, �2−s and �2+s are determined and
�′ can be evaluated.

Changes in the field strength B at any interface enter
equation (31) through the solution to χ ′

0(r), given by equation
(32). Stability is hence a property of the rotational transform,
the Lagrange multipliers, and any jumps in the pressure or
rotational transform across the interfaces. If there are such
jumps in pressure or rotational transform, stability is also a
function of the position of the barriers. Our working reduces
to Tassi et al [8] in the limit of no pressure, field or rotational
transform jumps across the interfaces and no vacuum.

4. Stability for an RFP-like configuration

We have compared stability conclusions using variational and
tearing mode treatments for an illustrative two-interface (i.e.
N = 2) configuration. The example chosen is guided by earlier
detailed working [1], where the core Lagrange multiplier was
µ1 = 2. The internal interface is placed at r1 = 0.5, the
plasma–vacuum boundary positioned at r2 = 1, and the axial
periodicity length chosen to be 20π , such that the effective
inverse aspect ratio r2/R = 1/10 is small. The change in safety
factor between the internal interface and the plasma–vacuum
boundary has been chosen to resemble Hole et al [1], subject to
the different R values used for the two treatments (R = 1/(2π)

in [1]). We have used µ2 = 3.6, which requires d2/k2 = 0.77
for the rotational transform profile to be continuous. A second
motivation for this choice is the similarity to q profiles of
high confinement RFPs, such as the Madison symmetric torus
[13] and RFX-mod [14], although the change in µ is greatly
exaggerated in this work. The plasma pressure is selected by
the parametrization β1 = p1/(B

2
V /2µ0), β2 = p2/(B

2
V /2µ0).

Except for the final scan over β, a pressureless plasma is
assumed (i.e. β1 = β2 = 0). Figure 1(b) shows the q profile
for the chosen equilibrium, where q = 1/ ι-.

Figure 2(a) is a dispersion curve for m = 1 modes,
showing λ computed using the variational treatment, and
−rs�

′ computed for modes resonant within the plasma.
Marginal stability corresponds to λ = 0 and �′ = 0: these
overlap identically in figure 2(a). Modes with n = −16 and
n = 12 correspond to perturbations near-resonant with the
outer and inner interfaces (q(r2) ≈ −1/16 and q(r1) ≈ 1/12),
respectively.

In our variational treatment, we have prescribed no
relationship between ξ and b in the relaxed regions (see below
for further discussion). As such, except on the ideal interfaces,
field-line resonance in such plasmas is not explicitly resolved.
Expressions can however be constructed which provide an
estimate of the localization of the mode rs,eff , and a convenient
choice is r2

s,eff = ∑N
i=1(riXi)

2, where the eigenvectors are
normalized such that X · XH = 1, with H the Hermitian.

Figure 2(b) shows a comparison of rs,eff to rs, in which
modes unstable in the variational and tearing mode treatment

5
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Figure 3. Wall stabilization (a) and marginal stability pressure dependence (b) of MRXMHD plasmas unstable to m = 1 modes. Panel (a)
shows the dispersion curves of MRXMHD plasmas unstable to m = 1 modes as a function of n for different conducting wall radii. In panel
(b) marginal stability n − β space is shown for different pressure profile configurations. The solid lines are for the pressure in the outer
region set to zero (β2 = 0), while the dashed line corresponds to zero core pressure (β1 = 0).

have been identified. Agreement between rs,eff and rs is
qualitatively good in the interval over which the plasma is
unstable, and excellent near the interfaces. The n = −16
and n = 9 modes are near resonant with the outer and inner
interfaces, respectively. As shown in figure 3(a), a stability
scan with wall radius indicates that in the limit rw → 1,
modes for n < 0 are wall-stabilized. In the limit that the
outer interface is made resonant with the n = −16 tearing
mode (for example by changing R), �′ → ∞. This mode is
the current driven external kink of ideal MHD. Conversely, the
unstable range for n � 12 is only very weakly affected by the
wall position. If the inner interface is mode resonant with the
perturbation, �′ → ∞, and the mode is ideal unstable. This
is the internal kink of ideal MHD.

Recently, Mills et al [6] demonstrated that one can unify
ideal and relaxed variational treatments by extending the
relationship between b and ξ through the Newcomb gauge
a = ξ × B. If this variational treatment is followed, rational
surfaces do explicitly enter the expression for ξ as derived
from br , the variation in the radial part of the magnetic field,
and so both relaxed and tearing modes become localized at the
resonant surface rs .

The findings of figure 2, obtained for a pressureless
plasma, agree with that of Furth et al [15], who showed that
for cylindrical pressureless plasma with no vacuum, �′ is
proportional to the second variation in the magnetic energy,
which thus drives the tearing mode.

It is insightful to examine the influence of the Lagrange
multiplier value on stability for variational and tearing mode
treatments, and examine how stability relates to the q profile.
For both variational and tearing mode treatment cases, if the
edge Lagrange multiplier is changed to match the core, such
that µ1 = µ2 = 2.0, q becomes everywhere positive: q = 0.1
at the core, drops to q = 0.039 at the plasma vacuum boundary,
and then rises to q = 0.469 at the wall. In this case, there are no
unstable m = 1, n < 0 modes, as there are no q < 0 resonant
surfaces within the plasma. The plasma is however unstable
to m = 1, 17 � n � 25 modes. Because there are no jumps
in pressure or rotational transform at the interfaces, stability is
insensitive to variation of the position of the interface. These
results demonstrate that agreement between tearing mode and
variational treatments is not contingent upon a special choice

of Lagrange multiplier used. As expected, it is also a necessary
but not sufficient condition that for a (m, n) tearing mode
to be unstable, the corresponding resonant surface must be
present in the plasma. As an aside, we remark that the stability
conclusions for the µ1 = µ2 = 2 configuration investigated
here differ from the Bessel function model of Gibson and
Whiteman [16]. For m = 1 modes the Bessel function model
is stable providing µ < 3.11. The difference in treatments is
the presence of a vacuum region, which is ignored in the Bessel
function model, but retained here. In the limit that rw → 0 in
our work, the stability conclusions agree.

We have also compared stability conclusions drawn from
variational and tearing mode treatments as a function of β. We
find that while both variational and tearing mode treatments
have the same stability trends with β, the marginal stability
limit of the variational treatment (for a given m and n) is lower
than that of tearing modes. A study is ongoing into the cause
of this discrepancy, as well as formally relating δ2W to �′.

Finally, figure 3(b) is a plot of the marginal stability
boundary (λ = 0) in n−β space for m = 1 eigenmodes of the
variational treatment. The two pressure profile configurations
that have been studied are β1 = 0 and β2 = 0. Trends in the
marginal stability boundary can be understood by relating the
radial location of the mode resonant surface to the analogue
of radial pressure gradient in the MRXMHD model: the sign
and magnitude of nearby pressure jumps. For n > 0 modes
resonant near the first interface, an increasing core pressure
increases the pressure drop across the first interface, and
so destabilizes the plasma. Conversely, increasing the edge
pressure leads to a pressure jump across the first interface, and
so stabilizes the internal modes. For β2 > 0.3 all m = 1
internal modes (n > 0) are completely stabilized. For the
n < 0 modes resonant near the edge, changes in the core
pressure have little effect, while increasing the edge pressure
destabilizes the plasma.

5. Conclusions

We have computed the stability MRXMHD plasmas using
both a variational and a tearing mode treatment, evaluated in
a periodic cylindrical configuration. The marginal stability
conclusions of the two treatments for a zero β plasma, as
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well as the trends with β, appear to be identical, in agreement
with earlier analytic working by Furth et al [15]. For such
plasmas, we conclude that the space of allowed MRXMHD
variations is identical to that of tearing modes plus ideal MHD
modes. For nonzero β, some discrepancy exists between the
marginal stability boundaries of variational and tearing mode
treatments, with the stability limit of variational plasmas lower
than that of tearing modes. A study is underway to resolve this
discrepancy.

The overarching aim of this work has been to elucidate
the nature of perturbations available to MRXMHD equilibria,
which in turn is motivated by our quest for mathematically
rigorous solutions of MHD force balance in 3D geometry. Our
working extends the model of Tassi et al [8] to nonzero β

multiple region relaxed plasmas that include a vacuum, and
complements Mills et al [6], who demonstrated that that one
can unify ideal and relaxed variational treatments through
the Newcomb gauge. Combined, our results suggest that
variational stability of MRXMHD configurations is sufficient
for both ideal and tearing (�′ < 0) stability. This is to be
expected because the MRXMHD constraints are a subset of the
ideal MHD constraints, but allow reconnection. Consequently,
the allowed variations of ideal MHD are a subset of MRXMHD
[5]. The wider exploration of the space of allowed variations
of MRXMHD is an area of ongoing research.

The relevance of stability studies of 2D configurations to
the development of rigorous solutions of MHD force balance
in 3D geometry is multi-fold. Recently, Mills et al [6]
showed that configurations with a jump in rotational transform
on either side of the barrier are internally unstable to ideal
MHD modes. Hence, barriers can not support a jump in
rotational transform. In earlier work [4] we identified that if
the MRXMHD equilibrium is prescribed by plasma properties
at specified interfaces, equation (5) becomes a nonlinear
eigenvalue problem for the Lagrange multipliers, µi , with
an infinite number of discrete solutions. Different solutions
correspond to a different number of poles in the rotational
transform [4]. However, as discussed in Taylor [17], the
magnetic free energy increases with increasing µ, and so the
higher eigenvalues are generally more unstable. In 3D we
plan to use a descent algorithm to find a true minimum of
the energy within a search space including multiple poloidal
and toroidal Fourier harmonics, so that unstable solutions
are automatically discarded. If there are multiple minima,
algorithms for choosing the lowest energy minimum, for given
constraints, will need to be used to find a nonlinearly stable
solution.

In other ongoing work we are also exploring the maximum
pressure jump an interface can support before it is destroyed
by instabilities and chaos. We are also planning to improve the
physical utility of the MRXMHD model, which at present is a
minimal extension of ideal MHD equilibrium theory, being
a zero-Larmor-radius, single-fluid, static model. We have
in mind extending the model to comprise two fluids with
flows, while remaining within a relaxation framework. A
future plan is to explore the use of the double Beltrami model

[18], which has been shown to be useful for describing the
phenomenology of the pressure pedestal in H-mode tokamak
discharges [19].
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